专题: 低维材料非线性光学与器件

Ag@SiO₂ 耦合结构设计及其对薄膜 太阳电池的响应调控^{*}

宫步青1) 陈小雨1) 王伟鹏1) 王治业1) 周华2) 沈向前1)†

1) (新疆大学物理科学与技术学院, 乌鲁木齐 830046)

2) (山东大学物理学院, 济南 250100)

(2020年3月4日收到; 2020年3月19日收到修改稿)

Ag@SiO₂纳米耦合结构同时具有等离激发和衍射散射特性,可有效调控光波的行进路径和能量分布,在 薄膜太阳电池陷光领域极具潜力.本文基于时域有限差分方法和严格耦合波分析,建立三维电磁仿真模型, 研究 Ag@SiO₂ 耦合结构对非晶硅电池光谱响应的调控机理,通过优化设计,得到高陷光电池器件.结果表明: 当 Ag 和 SiO₂ 特征尺寸分别为 18 和 150 nm 时,共振波和衍射波达到最优耦合,通过耦合结构进入电池响应 层的透射光谱最大,相应量子效率显著增强.与同尺寸的平面电池相比,其光电转换效率从 7.19% 提高到 7.80%,相对提高了 8.48%.

关键词: Ag@SiO₂耦合结构, 陷光, 衍射散射, 等离激发 PACS: 88.30.gg, 88.40.H-, 88.40.J-, 88.40.jj

DOI: 10.7498/aps.69.20200334

1 引 言

微纳尺度光学调控是薄膜太阳电池设计核心 之一,通过先进的光子管理技术,薄膜电池可以在 维持低成本等优势的同时达到相对较高的光电转 化效率^[1-5]. 传统的光子捕获方法受限于自身机理, 难以突破基于热平衡理论的 Yablonovitch 极限 (Y极限)^[6,7]. 设计具有高响应、宽波段的新型陷光 结构是这一领域的研究焦点. 纳米尺度的金属/介 质结构能与入射光波产生强烈的相互作用,可有效 调控光波行进路径和能量分布,因而在光子设计领 域备受关注^[8-10]. 目前为止,基于金属/介质的陷 光研究主要以 Ag, Au, SiO₂等单一纳米结构为 主^[11-13]. 如 Atwater 和 Polman 等^[1]设计了一系 列金属纳米结构,研究发现,纳尺度金属结构对 入射平面波有强烈的散射、耦合及束缚作用,电池 光子吸收和转化效率因而显著提高.在共振波段, 这一模式的陷光倍数可以超越Y极限.Li等^[14]研 究了不同形貌Ag纳米结构的等离激发特性,通过 棱镜形纳米颗粒的高次模谐振,在较宽波段增强了 有机太阳电池的光谱响应,电池光生电流提升 了17.91%,最终的能量转换效率提高了19.44%. Dennis^[15]通过SiO₂介质球散射,把光波限制在高 折射率材料中,此方法可使 a-Si 电池短路电流密 度达到13.77 mA/cm²,相比平面结构提高了12%. 尽管如此,为了达到预期的光波调控效果,介质和 金属的特征尺寸分别约需要600和100 nm^[11].这 种尺度一方面会破坏电池原有的界面结构,增加复 合损失;另一方面,金属自身的寄生吸收损失也不

* 新疆维吾尔自治区自然科学基金 (批准号: 2017D01C069) 和新疆维吾尔自治区高校科研计划 (批准号: XJEDU2017S004) 资助 的课题.

† 通信作者. E-mail: sxqlyq@xju.edu.cn

© 2020 中国物理学会 Chinese Physical Society

容忽视.因而,这种单一结构的陷光设计在实际应用中受到很大的限制^[12].

与上述单一的金属或介质结构相比,以金属 Ag 为核、SiO₂ 介质球为壳层构成的 Ag@SiO₂ 纳 米耦合结构既保留了纳金属结构的表面等离子体 共振增强作用,同时外层的 SiO₂ 介质又可以增强 光子散射和光波导作用.此外,SiO₂ 壳层的引入避 免了金属 Ag 与电池的直接接触,陷光单元具有更 好的化学稳定性和耐热性,对减少寄生吸收、复合 和反射损失大为有益^[16–18].2017 年 Wang 等^[19] 证 实 Ag@SiO₂ 的引入能有效抑制钙钛矿薄膜晶粒间 的针孔,提升电子传输能力以及电子-空穴对的分 离效率.通过 Ag@SiO₂ 耦合结构的局域等离激发 增强,相应的电池能量转换效率提高了 18.03%.

研究金属核和介质壳层之间的光波耦合关系, 设计最优的核壳比率是进一步增强光子捕获效率 的关键.本文基于时域有限差分方法 (finite difference time domain, FDTD) 以及严格耦合波分析 (rigorous coupled wave analysis, RCWA), 建立三 维电磁仿真模型,研究分析了 Ag@SiO₂ 耦合结构 与入射光波的作用机理,并通过 Ag@SiO₂ 期合结构 与入射光波的作用机理,并通过 Ag@SiO₂ 的衍射 散射和等离共振调控薄膜太阳电池的光谱响应,得 到最大的光电转换效率.在已有的实验报道中, Ag@SiO₂ 核壳结构具有球体、棒状、线状和立方体 等形貌^[13,14].由于球形结构具有中心对称性,产生 的衍射波和共振波因而也具有对称性,容易实现耦 合调控.此外,相对而言,球形结构具有更好的热 稳定性且更易制备^[11].因此,本文研究针对球状 Ag@SiO₂ 展开.

2 器件模型与仿真方法

仿真模型如图 1(a) 所示, 电池从上到下依次 为ITO (80 nm)/a-Si:H (400 nm)/AZO (130 nm)/ Ag (100 nm). Ag 和 SiO₂ 设置为同心球, 置于电池 迎光面, 周期紧密排列, 二者的直径分别用 D_{Ag} 和 $D_{SiO_2}表示. 模拟参数设置如下: X和 Y方向设置为$ 周期性边界条件 (periodic boundary condition,PBC), Z方向设置为完美匹配层 (perfect matched layer, PML), 空间网格步长设置为 1 nm, 即 $<math>\Delta x = \Delta y = \Delta z = 1$ nm, $\Delta t = 0.576$ ns. 仿真过程 中用到的材料折射率 (n) 和消光系数 (k) 如图 1(b) 所示^[20].

图 1 器件模型与结构参数 (a)Ag@SiO₂和薄膜电池结构示意图; (b) 材料折射率 (n) 和消光参数 (k)

Fig. 1. Cell device model and structural parameters: (a) Schematic diagram of thin film solar cell and $Ag@SiO_2$; (b) the refractive index (n) and extinction (k) of materials.

3 结果与讨论

首先研究 Ag 和 SiO₂ 特征尺寸变化时对薄膜 电池光谱响应的影响.固定 D_{Ag} = 20 nm, D_{SiO2}从 20 nm 逐步增加到 300 nm, 步长为 5 nm. 平面光 波从电池上端垂直入射, 经 Ag@SiO₂ 散射耦合后 进入电池响应层 (a-Si:H), 模拟得到的反射、透射 和吸收光谱如图 2 所示.为了提高电池光电转换效 率, 需要最大化进入响应层的光子数量, 即最大化 透射光谱.

由图 2(b) 可知, 透射光谱受 SiO₂ 介质特征尺 寸调控发生明显变化. 当*D*_{SiO2} <50 nm 时, 透射光 谱整体偏低, 这是由于 Ag 纳米颗粒的反射所致. 此区域中 *D*_{Ag}/*D*_{SiO2}比值较大, 即 Ag 在 Ag@SiO₂ 耦合结构中占比较大, 大部分光子在进入 ITO 层 之前直接被反射回空气层.图 2(a) 所示的反射光 谱也证实了这一点, 在这一区域, 最高的反射率超 过了 80%. 随着 *D*_{SiO2}尺寸继续增大, 反射明显降 低, 大部分光子得以进入 Ag@SiO₂, 并与 Ag 纳米 颗粒发生强烈的等离共振.但由于等离共振对短波 段光子的吸收, 如图 2(c) 所示, 当*D*_{SiO2} < 100 nm

图 2 SiO₂对电池响应光谱的调控 (a) 反射光谱; (b) 透射光谱; (c) 吸收光谱

Fig. 2. Regulation of SiO_2 on response spectrum of solar cell: (a) Reflectance spectrum; (b) transmitted spectrum; (c) absorption spectrum.

图 3 Ag 对电池响应光谱的调控 (a) 反射光谱; (b) 透射光谱; (c) 吸收光谱

Fig. 3. Regulation of SiO_2 on response spectrum of solar cell: (a) Reflectance spectrum; (b) transmitted spectrum; (c) absorption spectrum.

时, 短波光子吸收率在 70% 左右, 最终只有大部分 长波光子进入响应层. 当 $D_{SiO_2} > 150 \text{ nm}$, 共振吸 收逐渐减弱; 而当 $D_{SiO_2} > 200 \text{ nm}$ 时, Ag 在耦合 结构中的占比减弱明显, Ag 颗粒对光波的等离束 缚也随之减弱. 总体而言, 当 $D_{SiO_2} = 150 \text{ nm}$ 时, 进入响应层的透射光谱最强.

根据以上结果,固定 $D_{SiO_2} = 150 \text{ nm}, D_{Ag}$ 从 0 逐步增加到 150 nm,步长为 5 nm,模拟得到进入响应层的反射、透射和吸收光谱如图 3 所示.可以看出,当 $D_{Ag} < 10 \text{ nm}, Ag$ 的等离激发很弱.如图 3(b)所示,随着 D_{Ag} 逐渐增大,共振也随之增强,伴随强烈的短波段光子共振吸收.当 $D_{Ag} > 10 \text{ nm}$ 后,中波段共振吸收也开始加剧. $D_{Ag} > 60 \text{ nm}$ 后,如图 3(a)所示,反射损失逐渐变得明显.当 $D_{Ag} = 18 \text{ nm}$ 时,透射进电池响应层的光谱整体最强.

基于以上优化结果,选择 $D_{SiO_2} = 150 \text{ nm}$ 和 $D_{Ag} = 18 \text{ nm}$ 构建 $Ag@SiO_2$ 耦合结构,并按图 1(a)构建非晶硅薄膜电池,研究耦合结构对电池光谱响 应和光电转换效率的调控.为直观对比,同时计算 了相同响应厚度的平面、Ag 单独存在、 SiO_2 单独 存在和 Ag@SiO₂ 耦合结构四种电池. 电学性能采 用理想的二极管模型计算, 具体方法如下: 对于给 定的太阳辐照光谱 $S(\lambda)$, 特定波长 λ 中所包含的入 射光子 $n_S(\lambda) = \frac{\lambda}{hc}S(\lambda)$, 在这一波段产生并被电 极收集的电子-空穴对 $n_{e-h}(\lambda) = \frac{\lambda}{hc}\eta_i\eta_s S(\lambda) A_i(\lambda)$, 总辐照功率 $P_{in} = \int S(\lambda)d\lambda$. 其中, h和 c分别为 普朗克常数和真空中的光速, η_i 和 η_s 分别为电极对 载流子的收集效率和电极对入射光子的遮挡比率, $A_i(\lambda)$ 为电池响应层的吸收率. 电池相应的外量子 响应效率 $\varepsilon_{EQE}(\lambda)$ 、光生电流密度 J_{sc} 以及电池转换 效率 η 分别为

$$\varepsilon_{\text{EQE}}\left(\lambda\right) = \frac{n_{\text{e-h}}\left(\lambda\right)}{n_{\text{s}}\left(\lambda\right)},\tag{1}$$

$$J_{\rm sc} = \int e n_{\rm e-h} \left(\lambda \right) \mathrm{d}\lambda, \tag{2}$$

$$\eta = \frac{J_{\rm sc} V_{\rm oc} f_{\rm FF}}{P_{\rm in}},\tag{3}$$

其中, e为电子电量, V_{oc}和 f_{FF}分别为电池开路电 压和填充因子, 其值取自文献 [21] 中的测量数据.

图 4 为计算得到的电池光谱响应特性和光电

转换性能. 从图 4(a) 和图 4(b) 可以看出, 相比平 面结构, Ag, SiO₂, Ag@SiO₂ 三种纳米结构的引入 都有效增强了电池总的吸收效率和相应的量子 响应效率, 其中最优的响应曲线为 Ag@SiO₂. 耦合 结构对电池的响应提升在 500—650 nm 之间表现 尤为明显, 这是 Ag 颗粒等离共振激发和 SiO₂ 介 质球衍射散射共同作用的结果. 对比 SiO₂ 曲线, Ag@SiO₂ 在 650 和 700 nm 附近响应明显增强, 对应 Ag 颗粒的共振激发频率. 而与 Ag 独立存在 相比, 耦合结构在 500—750 nm 之间响应整体增 强, 说明 SiO₂ 介质球的引入增强了衍射散射, 使更 多光子进入到电池器件. 光子在 Ag@SiO₂ 电池各 非响应层中的损耗情况如图 4(c) 所示.可以看出, 中短波段的光学损失主要出现在 a-Si_P 和 ITO 中,而长波段的损失主要出现在 AZO 和 a-Si_N 中,Ag 纳米结构自身的寄生吸收损失只有 2% 左 右.光子在不同结构中的能量分布可以进一步说明 这一点,如图 5 所示,当 SiO₂ 介质球单独存在时, 由于受介质球散射调制,光波局域分布在介质球的 两端.而在 Ag@SiO₂ 耦合结构中,可以同时观察 到强烈的等离共振和衍射散射.通过共振波和散射 波耦合,光子捕获能力显著增强.

另外值得注意的是, 在短波段, 耦合结构的响应明显低于平面电池, 这一方面是 Ag 颗粒的反射

图 4 不同结构电池光谱响应特性和光电转换性能 (a) 电池吸收曲线; (b) 量子响应效率; (c) 非响应层中的光学损失; (d) 伏安 特性曲线

Fig. 4. Spectral response characteristics and photoelectric conversion performance of solar cell with different structures: (a) Total absorption of cell devices; (b) external quantum efficiency; (c) optical loss in inactive layers; (d) current voltage characteristics.

损失所致,另一方面,由于介质球对光子的衍射散 射,光波原有的干涉相消被破坏,这也部分导致 了反射损失的增多.对应四种电池的伏安特性曲 线如图 4(d) 所示,可以看出,与平面电池相比,Ag, SiO₂,Ag@SiO₂ 增加了电池的光生电流,相应的光 电转换效率从 $\eta_{\text{flat}} = 7.19\%$ 提高到 $\eta_{\text{Ag@SiO}_2} = 7.80\%$, 效率相对提高了 8.48%.

4 总 结

本文采用 FDTD 和 RCWA 对 Ag@SiO₂ 纳 米耦合结构的等离激发、衍射散射、光波调控等特 性作了探讨.基于耦合结构对太阳电池响应光谱的 优化调控,设计了高光电转换效率的薄膜电池.当 Ag 和 SiO₂ 的特征尺寸分别为 18 和 150 nm 时, 进入电池响应层的透射光谱最大,同时耦合结构自 身的吸收和反射损失最小.以此构筑的非晶硅薄膜 电池光电转换效率为 7.80%,与相同响应厚度的平 面电池相比,效率相对提高了 8.48%.

参考文献

- [1] Atwater H A, Polman A 2010 Nat. Mater. 9 205
- [2] Zhong S H, Wang W J, Zhuang Y F, Zeng G, Shen W Z 2016 Adv. Funct. Mater. 26 4768
- [3] Geng C, Zheng Y, Zhang Y Z, Yan H 2016 Acta Phys. Sin.
 65 070201 (in Chinese) [耿超, 郑义, 张永哲, 严辉 2016 物理学报 65 070201]
- [4] Huang X J, Shen H J, Li T, Li X L 2018 Acta Energiae Solaris Sinica 39 3406 (in Chinese) [黄仙健, 沈宏君, 李婷, 李 新兰 2018 太阳能学报 39 3406]

- [5] Chen P Z, Yu L Y, Niu P J, Fu X S, Yang G H, Zhang J J, Hou G F 2018 Acta Phys. Sin. 67 028802 (in Chinese) [陈培 专, 于莉媛, 牛萍娟, 付贤松, 杨广华, 张建军, 侯国付 2018 物理 学报 67 028802]
- [6] Yu P, Wu J, Liu S T, Xiong J, Chennupati Jagadish, Wang Z M 2016 Nano Today 11 704
- Zhang S Y, Liu W, Li Z F, Liu M, Liu Y S, Wang X D, Yang F H 2016 Chin. Phys. B 25 106802
- [8] Shen X Q, Wang Q K, WangYang P H 2016 IEEE Photonics Technol. Lett. 28 1477
- [9] Yu H K, Liu B D, Wu W L, Li Z Y 2019 Acta Phys. Sin. 68 149101 (in Chinese) [虞华康, 刘伯东, 吴婉玲, 李志远 2019 物 理学报 68 149101]
- [10] Li N N, Zhang H, Wang J F 2019 Sci. Sin.-Phys. Mech. Astron. 49 124204 (in Chinese) [李楠楠, 章瀚, 王建方 2019 中 国科学: 物理学 力学 天文学 49 124204]
- [11] Enrichi F, Quandt A, Righini G C 2017 Renewable Sustainable Energy Rev. 8 094
- [12] Kosei U, Tomoya O, Quan S, Xu S, Hiroaki M 2018 Chem. Rev. 118 2955
- [13] Dhanavel G, Xie F Y, Sun Q Q, Li Y F, Wei M D 2018 Langmuir 34 5367
- [14] Li X, Choy W C H, Lu H, Sha W E I, Ho A H P 2013 Adv. Funct. Mater. 23 2728
- [15] Dennis M C J 2015 Ph. D. Dissertation (California: California Institute of Technology)
- [16] Holly F Z, Olivia H, Joseph A W, Chanse H, William R E, Rizia B 2014 ACS Photonics 1 806
- [17] William R E, Andrew C, Holly F Z, Poorva A, Kevin J M, Rizia B 2014 Nanoscale 6 12626
- [18] Yoon H J, Yu J J, Seokhyoung K, Li N Q, Kyungwha C, Dong H K 2016 Chem. Rev. 116 14982
- [19] Wang Y, Zhou X, Liang C, Li P W, Hu X T, Cai Q B, Zhang Y Q, Li F Y, Li M Z, Song Y L 2017 Adv. Electron. Mater. 3 1700169
- [20] Edward D P 1998 Handbook of Optical Constants of Solids (San Diego: Academic Press) p519
- [21] Shen X Q 2016 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese) [沈向前 2016 博士学位论文 (上 海:上海交通大学)]

SPECIAL TOPIC—Nonlinear optics and devices of low-dimensional materials

$Ag@SiO_2$ coupled structure's design and regulation and control of response to thin film solar cells^{*}

 $\label{eq:Gong Bu-Qing^1)} \begin{array}{ccc} \mbox{Chen Xiao-Yu^1)} & \mbox{Wang Wei-Peng^1)} & \mbox{Wang Zhi-Ye^1)} \end{array}$

Zhou Hua²) Shen Xiang-Qian¹[†]

(School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China)
 (School of Physics, Shandong University, Jinan 250100, China)

(Received 4 March 2020; revised manuscript received 19 March 2020)

Abstract

The coupled nano-structure $Ag@SiO_2$ has both plasmon excitation like metallic nanoparticles and diffraction scattering like a dielectric nanosphere, which effectively controls the propagation path and the energy distribution of incident light and shows great potential applications in light trapping for thin film solar cells. In this work, we construct a three-dimensional electromagnetic model based on the finite-difference time-domain (FDTD) and rigorous coupled-wave analysis (RCWA) method to investigate the regulation mechanism of $Ag@SiO_2$ coupling structure to the spectral response of amorphous silicon cells. By being optimally designed, a high-efficiency cell device is achieved. The results show that the transmitted light into the active layer reaches a maximum value when Ag and SiO₂ have their feature sizes of 18 and 150 nm, respectively. The absorption spectrum of the corresponding cell device also arrives at its maximum value. The photoelectric conversion efficiency is enhanced from 7.19% to 7.80%, with an increment of 8.48% compared with the flat solar cell with an equivalent thickness of absorbing layer.

Keywords: Ag@SiO2 coupled structure, light trapping, diffraction scattering, plasmon excitationPACS: 88.30.gg, 88.40.H-, 88.40.J-, 88.40.jjDOI: 10.7498/aps.69.20200334

^{*} Project supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region of China (Grant No. 2017D01C069) and the Higher Education Research Program of Xinjiang Uygur Autonomous Region of China (Grant No. XJEDU2017S004).

[†] Corresponding author. E-mail: sxqlyq@xju.edu.cn